
HTTPJolie™ Installation and User Guide

What is HTTPJolie™

HTTPJolie™ is a plugin for Invelos DVD Profiler™ . Its fundamental purpose is to provide a lightweight

and user friendly way to access DVD profile information, using DVD Profiler™ as the host for an HTTP

Server. The server responds to HTTP "GET" requests at a specific port address that can be set by the

user. The GET requests must consist of one of the pre-defined supported functions of HTTPJolie™. One

of those functions includes the ability to trigger menus and launch command files of DVD Profiler™ ,

hence in addition to the pre-defined functions, users can in fact create custom functionality.

HTTP GET requests can be typed into the URL input field of any web browser such as Safari, Chrome,

Internet Explorer, FireFox, Edge or Silk. Responses to the GET requests are sent back to the originating

browser (or originating program), anywhere on the user's network - desktop or mobile. Images are

rendered as text strings internal to the browser.

HTTP GET requests can also be generated from any computer programming language and transmitted to

the IP address and port of the computer where DVD Profiler™ with the HTTPJolie™ plugin installed, is

running.

Users of plugin HTTPJolie™ must be registered DVD Profiler™ users, and also be registered on the

website www.invelos.com, where support for the plugin is provided at the “Plugins” thread.

Installation

The plugin is available here, and is free for individual use. Commercial use must be either approved by

the author. This approval is also implicit in grateful appreciation for Tips or above a designated level.

After downloading and un-zipping , the installation EXE file should be executed. Follow the prompts.

During this process, DVD Profiler cannot be running, and after successful plugin installation, DVD Profiler

must be run thereafter in Administrator (elevated) mode whenever HTTPJolie™ is to be used. It is

possible to run in non-elevated mode, however HTTPJolie™ will not connect.

http://www.invelos.com/
https://www.mediadogg.com/shopping/http-jolie-plugin-for-invelos-dvd-profiler.html

Setting Options

The only user interface for the plugin can be found at Tools > View Plugins > HTTPJolie > Options. This is

where the HTTP server port can be set. Also there is a tool provided for generating the “hashed” version

of a name variant for profile credit searches.

The default server port is 41395. Internally, the UDP broadcast port is set to 10 + server port, so the

default would be 41405. You may change the port setting to any port compatible with your PC

configuration. During server startup, an attempt is made to add your port setting to your Firewall. If it

fails, you will see a message, but there should be no serious consequences other than possibly not being

able to send commands from everywhere in your home network.

Name variants are the possible ways that an actor’s name can be spelled within the credits of a movie.

In order to get all the credits associated with a particular cast or crew member, it is often necessary to

search for credits using more than one name variant (or alias). To make it feasible to enter multiple

name variants in the command line of a browser, the “&getcredits” command has an option to search

using a string of hashed names, separated by commas. The hash is the same one used by DVD Profiler to

name custom headshots on your PC hard drive. The rules are detailed in the command specification. A

simple example would be:

 first middle last  last_first_middle

HTTPJolie™ Command Reference

HTTP GET requests can be typed into the URL input field of any web browser such as Safari, Chrome,

Internet Explorer, FireFox, Edge or Silk. Responses to the GET requests are sent back to the originating

browser (or originating program), anywhere on the user's network - desktop or mobile. Images are

rendered as text strings internal to the browser.

HTTP GET requests can also be generated from any computer programming language and transmitted to

the IP address and port of the computer where DVD Profiler™ with the HTTPJolie™ plugin installed, is

running.

A compact description of all commands parameters has been provided, and is available here: HTTPolie™

GET Requests Command Reference.

HTTPJolie™ Tutorial and Demo Videos

The following tutorial videos are available:

A Walk around HTTPJolie™ (Oveview – includes use of udpWatcher)

Using the GET Requests Command Reference

Use of the “&xml” Command

Use of the “¬ify” Command

Use of the “&getdata” and “&getinfo” Commands

Use of the “&html” Command

udpWatcher™ Sample Program

HTTP GET Requests (click the link for more information) can be sent from an HTTP client to any HTTP

Server on the internet. The most common way this is done today is via a web browser. HTTPJolie™ is an

HTTP Server that runs as a plugin inside Invelos DVD Profiler™.

HTTP commands can also be sent from modern programming languages. While debugging, I created a

test program udpWatcher™, to make it easier to find and fix bugs. udpWatcher™ has a display panel for

capturing and displaying UDP messages from HTTPJoile™, and a web browser for send HTTP messages

and display the responses. This sample program is not a supported application. It is supplied as a guide

https://www.mediadogg.com/shopping/downloads/HTTPJolie%20Command%20Reference.pdf
https://www.mediadogg.com/shopping/downloads/HTTPJolie%20Command%20Reference.pdf
https://www.mediadogg.com/shopping/downloads/HTTPJolie%20Overview.mp4
https://www.mediadogg.com/shopping/downloads/How%20to%20Read%20HTTPJolie%20Command%20Reference.mp4
https://www.w3schools.com/tags/ref_httpmethods.asp

for developers. Both the executable and source code written in the C# programming language, packaged

as a Microsoft Visual Studio 2017 Solution.

udpWatcher Screen Shot

udpWatcher™ Code Snippet

 private async void btnGETRequest_Click(object sender, EventArgs e)
 {
 if (!String.IsNullOrEmpty(txtGETRequest.Text))
 {
 rtbGETData.Clear();
 rtbMessages.Clear();
 this.rtbMessages.Text += "Listening on port: " + udpPort.ToString() + "\n";
 using (HttpClient sendGET = new HttpClient())
 {
 HttpRequestMessage msg = new HttpRequestMessage();
 msg.Method = HttpMethod.Get;
 msg.RequestUri = new Uri(txtGETRequest.Text);
 sendGET.CancelPendingRequests();
 sendGET.MaxResponseContentBufferSize = 256 * 1024 * 1024;
 try
 {
 var result = await sendGET.GetAsync(msg.RequestUri);
 System.Threading.Thread.Sleep(250);
 switch (result.StatusCode)
 {
 case HttpStatusCode.OK:
 rtbGETData.Text = result.Content.ReadAsStringAsync().Result + "\n";
 this.webBrowser1.DocumentText = rtbGETData.Text;
 break;
 default:

 break;
 }
 }
 catch (Exception ex)
 {
 rtbMessages.Text += ex.InnerException.Message+"\n";
 this.rtbMessages.Text += "Listening on port: " + udpPort.ToString() + "\n";
 }
 }
 }
 }
 private void WebBrowser1_DocumentCompleted(object sender,
WebBrowserDocumentCompletedEventArgs e)
 {
 }
 private void rbtnViewText_CheckedChanged(object sender, EventArgs e)
 {
 this.webBrowser1.Hide();
 this.rtbGETData.Show();
 this.rtbGETData.BringToFront();
 }
 private void rbtnViewWeb_CheckedChanged(object sender, EventArgs e)
 {
 this.webBrowser1.Bounds = this.rtbGETData.Bounds;
 this.webBrowser1.Show();
 this.rtbGETData.Hide();
 this.webBrowser1.BringToFront();
 }
 private void MtbUDPPort_TextChanged(object sender, EventArgs e)
 {
 int tmpint = 0;
 if (int.TryParse(mtbUDPPort.Text, out tmpint))
 {
 udpPort = tmpint;
 }
 }
 private void cmbCommands_SelectedIndexChanged(object sender, EventArgs e)
 {
 this.txtGETRequest.Text = this.cmbCommands.SelectedItem.ToString();
 if (chkSendOnSelect.Checked)
 {
 this.btnGETRequest_Click(sender, e);
 }
 }
 }

Notes and Disclaimers:

- DVD Profiler™ must be run in administrator mode for HTTPJolie™ to connect to a client

- The BulkEdit version of HTTPJolie™ can be run in parallel, but with a different port

- The HTTPJolie™ port cannot be used for any other purpose on a given machine (IP address)

- UDP messages are not guaranteed (broadcast as connectionless messages)

- udpWatcher™ is a non-supported sample application. Bugs will be fixed, however it will not be

developed further by this author

- HTTPJolie™ can be used to support commercial desktop or mobile apps, only if visible credit is

given, and downloaded at the “Commercial” level, or with explicit approval by this author

- A local headshot should respond with the custom image, but it does not (Invelos™ bug)

- Due to DVD Profiler internals, the options for “titles” list work differently for online vs local

- A Name Variants Hash Tag Generator has been put into the HTTPJolie™ Options Panel. This hash

tag needs to be used to identify variants for credits search

- For the command “html”, the sending browser or program will need to display the resulting text

using UTF-8 encoding

- For technical reasons, custom media types cannot be discovered unless they have actually been

used in a profile. Profiles are scanned in the background from time to time in order to generate

the list. If you create a custom media type, the list will not reflect it until a few minutes after it

has been used for the first time.

